Воскресенье, 17.11.2019, 21:17
Приветствую Вас Гость | RSS

МБОУ "Шибертуйская средняя общеобразовательная школа"

Меню сайта
Категории раздела
День знаний [25]
День знаний
Наш опрос
Оцените мой сайт
Всего ответов: 96
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Уроки - соревнования

 

(Цыбикова Н.Д)

 Ребятам очень нравятся уроки – соревнования, состязательные уроки.
 Этот урок построен в классическом стиле КВН и одновременно полезен для повторения темы « Многоугольники».
 Класс разбивается на 2 команды, капитанов выбирают заранее.
Жюри – учителя математики, старшеклассники, ведущий – учитель.
а) Вступительная часть (3 мин) – представление команд, капитанов, членов жюри.
б) Приветствие команд. Команда выбирает эмблему – вид многоугольника и рассказывает о достоинствах этого вида фигуры.
Например, квадрат, параллелограмм, ромб.
в) разминка в 2 этапа:
1 этап. Участвуют все члены команд Ведущий задает вопросы. Участники отвечают, поднимая карточки « Да», « Нет».
Примерные вопросы:
1) Смежные стороны прямоугольника перпендикулярны.
2) Прямоугольником называется четырехугольник, у которого диагонали равны
3) Диагонали прямоугольника взаимно перпендикулярны.
4) Параллелограммом называется четырехугольник, две противоположные стороны которого равны.
5) Параллелограммом называется четырехугольник, диагонали которого в точке пересечения делятся пополам
6) Ромб является квадратом.
7) Квадрат – это ромб, у которого диагонали равны.
8) Прямоугольник – это четырехугольник, у которого диагонали равны.
9) Четырехугольник, у которого диагонали взаимно – перпендикулярны, является ромбом.
10) Всегда ли четырехугольник, у которого 2 противоположных угла прямые, является прямоугольником?
 
2 этап. Участникам одной команды предлагается дать начало определения или формулировки теоремы по данной теме, участник другой команды заканчивает ее и начинает новую для первой команды.
Пока жюри подводит итоги конкурсов приветствия и разминки, учитель со всем классом обсуждает результаты 1 этапа разминки.
 
 г) Домашнее задание.
Команды задают вопросы друг другу, подготовленные дома (не более 5 ), например предложены:
а) может ли сторона ромба равняться половине диагонали
б) при каком условии одна из диагоналей трапеции будет биссектрисой угла при большем основании трапеции.
в) может ли сумма внешних или внутренних углов правильного многоугольника быть равной 20000?
г) чему равен периметр квадрата, если точка пересечения диагоналей удалена от его стороны на а см
 
д) Конкурс капитанов Капитанам раздаются карточки с тремя вопросами
1. Из фанеры вырезан квадрат, все стороны которого прямолинейны и равны. Что нужно еще измерить, чтоб убедится, что квадрат вырезан правильно, если нет угломера?
2. Середины сторон четырехугольника последовательно соединены отрезками. Какая фигура получилась?
3. В форме стихотворения или песни дать формулировку теоремы или определения по данной теме.
4. Пока капитаны готовятся к ответу, командам дается задание записать все известные формулы по теме «Четырехугольники» или составить всевозможные определения посредством перечисления необходимого и достаточного набора существенных признаков:
1. Диагонали взаимно перпендикулярны
2. Многоугольник
3. Диагонали пересекаются и точкой пересечения делятся пополам
 4. Противоположные стороны попарно равны
5. Имеет 4 и только четыре угла
 6. Имеет хотя бы один прямой угол
7. Диагонали равны между собой
8. Четырехугольник
9. Две смежные стороны равны между собой
10. Параллелограмм
11. 4 стороны и 4 угла равны
12. Прямоугольник
13. Ромб
 
е) после разборов ответов подведение итогов урока.
 
Корзина
Поиск
Календарь
«  Ноябрь 2019  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
252627282930
  • Сайт учителя начальных классов Цыдыповой О.Д.
  • Сайт учителя начальных классов Чимитовой Ж.Ц.
  • Сайт учителя математики Цыбиковой С.Г.
  • Сайт учителя русского языка и литературы Будаевой Т.Ц.
  • Сайт учителя истории и обществознания Бадмаевой М.Б.
  • Сайт учителя русского языка и литературы Очировой Л.Ц.
  • Сайт учителя физики Цыдыпова Б.Ц.
  • Сайт Будажаповой Сержуни Дамбаевны

  • Copyright MyCorp © 2019
    Создать бесплатный сайт с uCoz